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SMART STRUCTURES AND MATERIALS 
 

 

SMART SYSTEMS/  STRUCTURES 

 

Definition of Smart Systems/  Structures 

The definition of smart structures was a topic of controversy from the late 1970’s to 

the late 1980’s. In order to arrive at a consensus for major terminology, a special 

workshop was organised by the US Army Research Office in 1988, in which 

‘sensors’, ‘actuators’, ‘control mechanism’ and ‘timely response’ were recognised 

as the four qualifying features of any smart system or structure (Rogers, 1988). In 

this workshop, following definition of smart systems/ structures was formally 

adopted (Ahmad, 1988). 

 

“A system or material which has built-in or intrinsic sensor(s), actuator(s) and 

control mechanism(s) whereby it is capable of sensing a stimulus, responding to it 

in a predetermined manner and extent, in a short/ appropriate time, and reverting 

to its original state as soon as the stimulus is removed” 

 

According to Vardan and Vardan (2000), smart system refers to a device which can 

sense changes in its environment and can make an optimal response by changing its 

material properties, geometry, mechanical or electromagnetic response. Both the 

sensor and the actuator functions with their appropriate feedback must be properly 

integrated. It should also be noted that if the response is too slow or too fast, the 

system could lose its application or could be dangerous (Takagi, 1990).  

 

Previously, the words ‘intelligent’, ‘adaptive’ and ‘organic’ were also used to 

characterize smart systems and materials. For example, Crawley and de Luis (1987) 

defined ‘intelligent structures’ as the structures possessing highly distributed 

actuators, sensors and processing networks. Similarly, Professor H. H. Robertshaw 
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preferred the term ‘organic’ (Rogers, 1988) which suggests similarity to biological 

processes. The human arm, for example, is like a variable stiffness actuator with a 

control law (intelligence). However, many participants at the US Army Research 

Office Workshop (e.g. Rogers et al., 1988) sought to differentiate the terms 

‘intelligent’, ‘adaptive’ and  ‘organic’ from the term ‘smart’ by highlighting their 

subtle differences with the term ‘smart’. The term ‘intelligence’, for example, is 

associated with abstract thought and learning, and till date has not been 

implemented in any form of adaptive and sensing material or structure. However, 

still many researchers use the terms ‘smart’ and ‘intelligent’ almost interchangeably 

(e.g. In the U.S.-Japan Workshop: Takagi, 1990; Rogers, 1990), though ‘adaptive’ 

and ‘organic’ have become less popular.  

 

The idea of ‘smart’ or ‘intelligent’ structures has been adopted from nature, where 

all the living organisms possess stimulus-response capabilities (Rogers, 1990).  The 

aim of the ongoing research in the field of smart systems/ structures is to enable 

such a structure or system mimic living organisms, which possess a system of 

distributed sensory neurons running all over the body, enabling the brain to monitor 

the condition of the various body parts. However, the smart systems are much 

inferior to the living beings since their level of intelligence is much primitive.  

In conjunction with smart or intelligent structures, Rogers (1990) defined following 

additional terms, which are meant to classify the smart structures further, based on 

the level of sophistication. The relationship between these structure types is clearly 

explained in Fig. 1 

 

(a) Sensory Structures: These structures possess sensors that enable the 

determination or monitoring of system states/ characteristics.  

(b) Adaptive Structures: These structures possess actuators that enable the 

alteration of system states or characteristics in a controlled manner. 

(c) Controlled Structures: These result from the intersection of the sensory and 

the adaptive structures. These possess both sensors and actuators integrated in 

feedback architecture for the purpose of controlling the system states or 

characteristics. 
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(d) Active Structures: These structures possess both sensors and actuators that are 

highly integrated into the structure and exhibit structural functionality in 

addition to control functionality.   

(e) Intelligent Structures: These structures are basically active structures 

possessing highly integrated control logic and electronics that provides the 

cognitive element of a distributed or hierarchic control architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

It may be noted that the sensor-actuator-controller combination can be realised 

either at the macroscopic (structure) level or microscopic (material) level. 

Accordingly, we have smart structures and materials respectively. The concept of 

smart materials is introduced in the following section. 

 

Smart Materials 

Smart materials are new generation materials surpassing the conventional structural 

and functional materials. These materials possess adaptive capabilities to external 

stimuli, such as loads or environment, with inherent intelligence. In the US Army 

Research Office Workshop, Rogers et al. (1988) defined smart materials as 

materials, which possess the ability to change their physical properties in a specific 

manner in response to specific stimulus input. The stimuli could be pressure, 

temperature, electric and magnetic fields, chemicals or nuclear radiation. The 

associated changeable physical properties could be shape, stiffness, viscosity or 

A 
B C 

D 

E 

A: Sensory structures; B: Adaptive structures; C: Controlled structures; 
D: Active structures; E: Intelligent structures. 

Fig. 1 Classification of smart structures (Rogers, 1990). 
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damping. This kind of ‘smartness’ is generally programmed by material 

composition, special processing, introduction of defects or by modifying the micro-

structure, so as to adapt to the various levels of stimuli in a controlled fashion.  Like 

smart structures, the terms ‘smart’ and  ‘intelligent’ are used interchangeably for 

smart materials. Takagi (1990) defined intelligent materials as the materials which 

respond to environmental changes at the most optimum conditions and manifest 

their own functions according to the environment. The feedback functions within 

the material are combined with properties and functions of the materials.  

 

Optical fibres, piezo-electric polymers and ceramics, electro-rheological (ER) 

fluids, magneto-strictive materials and shape memory alloys (SMAs) are some of 

the smart materials. Fig. 2 shows the associated ‘stimulus’ and  ‘response’ of 

common smart materials. Because of their special ability to respond to stimuli, they 

are finding numerous applications in the field of sensors and actuators. A very 

detailed description of smart materials is covered by Gandhi and Thompson (1992). 

 

Active and Passive Smart Materials 

Smart materials can be either active or passive. Fairweather (1998) defined active 

smart materials as those materials which possess the capacity to modify their 

geometric or material properties under the application of electric, thermal or 

magnetic fields, thereby acquiring an inherent capacity to transduce energy. 

Piezoelectric materials, SMAs, ER fluids and magneto-strictive materials are active 

smart materials.  Being active, they can be used as force transducers and actuators. 

For example, the SMA has large recovery force, of the order of 700 MPa (105 psi)  

(Kumar, 1991), which can be utilized for actuation. Similarly piezoelectric 

materials, which convert electric energy into mechanical force, are also ‘active’. 

 

The smart materials, which are not active, are called passive smart materials. 

Although smart, these lack the inherent capability to transduce energy. Fibre optic 

material is a good example of a passive smart material. Such materials can act as 

sensors but not as actuators or transducers. 
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Applications of Piezoelectric Materials  

Since this thesis is primarily concerned with piezoelectric materials, some typical 

applications of these materials are briefly described here. Traditionally, 

piezoelectric materials have been well-known for their use in accelerometers, strain 

sensors (Sirohi and Chopra, 2000b), emitters and receptors of stress waves 

(Giurgiutiu et al., 2000; Boller, 2002), distributed vibration sensors (Choi and 

Chang, 1996; Kawiecki, 1998), actuators (Sirohi and Chopra, 2000a) and pressure 

transducers (Zhu, 2003). However, since the last decade, the piezoelectric materials, 

their derivative devices and structures have been increasingly employed in turbo-

machinery actuators, vibration dampers and active vibration control of stationary/ 

moving structures (e.g. helicopter blades, Chopra, 2000). They have been shown to 

be very promising in active structural control of lab-sized structures and machines 

(e.g. Manning et al., 2000; Song et al., 2002). Structural control of large structures 

has also been attempted (e.g. Kamada et al., 1997). Other new applications include 

underwater acoustic absorption, robotics, precision positioning and smart skins for 

submarines (Kumar, 1991). Skin-like tactile sensors utilizing piezoelectric effect for 

Fig. 2 Common smart materials and associated stimulus-response. 
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sensing temperatures and pressures have been reported (Rogers, 1990). Very 

recently, the piezoelectric materials have been employed to produce micro and nano 

scale systems and wireless inter digital transducers (IDT) using advanced embedded 

system technologies, which are set to find numerous applications in micro-

electronics, bio-medical and SHM (Varadan, 2002; Lynch et al., 2003b). Recent 

research is also exploring the development of versatile piezo-fibres, which can be 

integrated with composite structures for actuation and SHM (Boller, 2002).  

  

The most striking application of the piezoelectric materials in SHM has been in the 

form of EMI technique. This is the main focus of the present thesis and details will 

be covered in the subsequent sections. 

 

Smart Materials: Future Applications 

Seasoned researchers often share visionary ideas about the future of smart materials 

in conferences and seminars. According to Prof. Rogers (Rogers, 1990), following 

advancements could be possible in the field of smart materials and structures.  

• Materials which can restrain the propagation of cracks by automatically 

producing compressive stresses around them (Damage arrest). 

• Materials, which can discriminate whether the loading is static or shock and can 

generate a large force against shock stresses (Shock absorbers). 

• Materials possessing self-repairing capabilities, which can heal damages in due 

course of time (Self-healing materials). 

• Materials which are usable up to ultra-high temperatures (such as those 

encountered by space shuttles when they re-enter the earth’s atmosphere from 

outer space), by suitably changing composition through transformation (thermal 

mitigation). 

 

Takagi (1990) similarly projected the development of more functional and higher 

grade materials with recognition, discrimination, adjustability, self-diagnostics and 

self-learning capabilities.  
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PIEZOELECTRICITY AND PIEZOELECTRIC MATERIALS  

The word ‘piezo’ is derived from a Greek word meaning pressure. The phenomenon 

of piezoelectricity was discovered in 1880 by Pierre and Paul-Jacques Curie. It 

occurs in non-centro symmetric crystals, such as quartz (SiO2), Lithium Niobate 

(LiNbO3), PZT [Pb(Zr1-xTix)O3)] and PLZT [(Pb1-xLax)(Zr1-yTiy)O3)], in which 

electric dipoles (and hence surface charges) are generated when the crystals are 

loaded with mechanical deformations. The same crystals also exhibit the converse 

effect; that is, they undergo mechanical deformations when subjected to electric 

fields.   

 

In centro-symmetric crystals, the act of deformation does not induce any dipole 

moment, as shown in Fig. 3.  However, in non-centro symmetric crystals, this  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

leads to a net dipole moment, as illustrated in Fig. 4. Similarly, the act of applying 

an electric field induces mechanical strains in the non-centro symmetric crystals. 

μ = 0 μ = 0 

Fig. 3 Centro-symmetric crystals: the act of stretching does not cause any 

dipole moment (μ = Dipole moment). 

Fig. 4 Noncentro-symmetric crystals: the act of stretching causes dipole moment in 

the crystal (μ = Dipole moment). 

μ = 0 μ ≠ 0
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Constitutive Relations 

The constitutive relations for piezoelectric materials, under small field condition are 

(IEEE standard, 1987) 

m
d
imj

T
iji TdED += ε               (1) 

m
E
kmj

c
jkk TsEdS +=                  (1) 

Eq. (1) represents the so called direct effect (that is stress induced electrical charge) 

whereas Eq. (2) represents the converse effect (that is electric field induced 

mechanical strain). Sensor applications are based on the direct effect, and actuator 

applications are based on the converse effect.  When the sensor is exposed to a 

stress field, it generates proportional charge in response, which can be measured. 

On the other hand, the actuator is bonded to the structure and an external field is 

applied to it, which results in an induced strain field. In more general terms, Eqs. 

(2.1) and (2.2) can be rewritten in the tensor form as (Sirohi and Chopra, 2000b) 
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where [D] (3x1) (C/m2) is the electric displacement vector, [S] (3x3) the second 

order strain tensor, [E] (3x1) (V/m) the applied external electric field vector and [T] 

(3x3) (N/m2) the stress tensor. Accordingly, [ Tε ] (F/m) is the second order 

dielelectric permittivity tensor under constant stress, [dd] (C/N) and [dc] (m/V) the 

third order piezoelectric strain coefficient tensors, and [ Es ] (m2/N) the fourth order 

elastic compliance tensor under constant electric field. 

 

Taking advantage of the symmetry of the stress and the strain tensors, these can be 

reduced from a second order (3x3) tensor form to equivalent vector forms, (6x1) in 

size. Thus, TSSSSSSS ],,,,,[][ 123123332211=  and similarly, 

TTTTTTTT ],,,,,[][ 123123332211= . Accordingly, the piezoelectric strain coefficients 

can be reduced to second order tensors (from third order tensors), as  [dd] (3x6) and 

[dc] (6x3). The superscripts ‘d’ and ‘c’ indicate the direct and the converse effects 

respectively. Similarly, the fourth order elastic compliance tensor [ Es ] can be 
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reduced to (6x6) second order tensor. The superscripts ‘T’ and ‘E’ indicate that the 

parameter has been measured at constant stress (free mechanical boundary) and 

constant electric field (short-circuited) respectively. A bar above any parameter 

signifies that it is complex in nature (i.e. measured under dynamic conditions). The 

piezoelectric strain coefficient c
jkd  defines mechanical strain per unit electric field 

under constant (zero) mechanical stress and d
imd  defines electric displacement per 

unit stress under constant (zero) electric field. In practice, the two coefficients are 

numerically equal. In c
jkd  or d

imd , the first subscript denotes the direction of the 

electric field and second the direction of the associated mechanical strain. For 

example, the term d31 signifies that the electric field is applied in the direction ‘3’ 

and the strain is measured in direction ‘1’. 

 

If static electric field is applied under the boundary condition that the crystal is free 

to deform, no mechanical stresses will develop. Similarly, if the stress is applied 

under the condition that the electrodes are short-circuited, no electric field (or 

surface charges) will develop. For a sheet of piezoelectric material, as shown in Fig. 

5, the poling direction is usually along the thickness and is denoted as 3-axis. The 1-

axis and 2-axis are in the plane of the sheet.  

 

The matrix [dc] depends on crystal structure. For example, it is different for PZT 

and quartz, as given by (Zhu, 2003) 
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where the coefficients d31, d32 and d33 relate the normal strain in the 1, 2 and 3 

directions respectively to an electric field along the poling direction 3. For PZT 

crystals, the coefficient d15 relates the shear strain in the 1-3 plane to the field E1 and 

d24 relates the shear strain in the 2-3 plane to the electric field E2. It is not possible 
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to produce shear in the 1-2 plane purely by the application of an electric field, since 

all terms in the last row of the matrix [dc] are zero (see Eq. 2.4). Similarly, shear 

stress in the 1-2 plane does not generate any electric response. In all poled 

piezoelectric materials, d31 is negative and d33 is positive. For a good sensor, the 

algebraic sum of d31 and d33 should be the maximum and at the same time, ε33 and 

the mechanical loss factor should be minimum (Kumar, 1991). 

 

 

 

 

 

 

 

 

 

 

The compliance matrix has the form 
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From energy considerations, the compliance matrix is symmetric, which leaves only 

21 independent coefficients. Further, for isotropic materials, there are only two 

independent coefficients, as expressed below (remaining terms are zero) 
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Fig. 5 A piezoelectric material sheet with conventional 1, 2 and 3 axes. 
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where EY is the complex Young’s modulus of elasticity (at constant electric field), 

EG the complex shear modulus (at constant electric field) and ν the Poisson’s ratio. 

It may be noted that the static moduli, YE and GE, are related by 

     
)1(2 ν+

=
E

E YG            (9) 

The electric permittivity matrix can be written as  
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From energy arguments, the permittivity matrix can also be shown to be symmetric, 

which reduces the number of independent coefficients to 6. Further, taking 

advantage of crystal configurations, more simplifications can be achieved. For 

example, it takes following simple forms for monoclinic, cubic and orthorhombic 

crystals (Zhu, 2003) 
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Commercial Piezoelectric Materials 

Previously, piezoelectric crystals, which used to be brittle and of large weight, were 

used in practice. However, now the commercial piezoelectric materials are available 

as ceramics or polymers, which can be cut into a variety of convenient shapes and 

sizes and can be easily bonded. 

 

(a) Piezoceramics 

Lead zirconate titanate oxide or PZT, which has a chemical composition   [Pb(Zr1-

xTix)O3)], is the most widely used type piezoceramic.  It is a solid solution of lead 

zirconate and lead titanate, often doped with other materials to obtain specific 

properties. It is manufactured by heating a mixture of lead, zirconium and titanium 

monoclinic orthorhombic 
(e.g. PZT) 

cubic 
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oxide powders to around 800-1000oC first to obtain a perovskite PZT powder, which 

is mixed with a binder and sintered into the desired shape. The resulting unit cell is 

elongated in one direction and exhibits a permanent dipole moment along this axis. 

However, since the ceramic consists of many such randomly oriented domains, it has 

no net polarization. Application of high electric field aligns the polar axes of the unit 

cells along the applied electric field, thereby reorienting most of the domains. This 

process is called poling and it imparts a permanent net polarization to the crystal. This 

also creates a permanent mechanical distortion, since the polar axis of the unit cell is 

longer than other two axes. Due to this process, the material becomes piezoelectrically 

transversely isotropic in the plane normal to the poling direction i.e. d31 = d32 ≠ d33; d15 

= d24,  but remains mechanically isotropic (Sirohi and Chopra, 2000b). 

 

PZT is a very versatile smart material. It is chemically inert and exhibits high 

sensitivity of about 3μV/Pa, that warrants nothing more sophisticated than a charge 

amplifier to buffer the extremely high source impedance of this largely capacitive 

transducer. It demonstrates competitive characteristics such as light weight, low-cost, 

small size and good dynamic performance. Besides, it exhibits large range of linearity 

(up to electric field of 2kV/cm, Sirohi and Chopra, 2000a), fast response, long term 

stability and high energy conversion efficiency. The PZT patches can be manufactured 

in any shape, size and thickness (finite rectangular shapes to complicated MEMS 

shapes) at relatively low-cost as compared to other smart materials and can be easily 

used over a wide range of pressures without serious non-linearity.  The PZT material is 

characterized by a high elastic modulus (comparable to that of aluminum). However, 

PZT is somewhat fragile due to brittleness and low tensile strength. Tensile strength 

measured under dynamic loading is much lower (about one-third) than that measured 

under static conditions. This is because under dynamic loads, cracks propagate much 

faster, resulting in much lower yield stress. Typically, G1195 (Piezo Systems Inc., 

2003) has a compressive strength of 520 MPa and a tensile strength of 76 MPa (static) 

and 21 MPa (dynamic) (Zhou et al., 1995). The PZT materials have negative d31, 

which implies that a positive electric field (in the direction of polarization) results in 

compressive strain on the PZT sheet. If heated above a critical temperature, called the 

Curie temperature, the crystals lose their piezoelectric effect. The Curie temperature 
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typically varies from 150oC to 350oC for most commercial PZT crystals. When 

exposed to high electric fields (>12 kV/cm), opposite to the poling direction, the PZT 

loses most of its piezoelectric capability. This is called deploing and is accompanied 

by a permanent change in the dimensions of the sample.  

 

Due to high stiffness, the PZT sheets are good actuators. They also exhibit high 

strain coefficients, due to which they can act as good sensors also. These features 

make the PZT materials very suitable for use as collocated actuators and sensors. 

They are used in deformable mirrors, mechanical micropositioners, impact devices 

and ultrasonic motors (Kumar, 1991), sonic and ultrasonic sensors, filters and 

resonators, signal processing devices, igniters and voltage transformers (Zhu, 2003), 

to name only a few. For achieving large displacements, multi layered PZT systems 

can be manufactured, such as stack, moonie and bimorph actuators. 

 

However, due to their brittleness, the PZT sheets cannot withstand bending and also 

exhibit poor conformability to curved surfaces. This is the main limitation with PZT 

materials. In addition, the PZT materials show considerable fluctuation of their 

electric properties with temperature.  Also, soldering wires to the electroded 

piezoceramics requires special skill and often results in broken elements, unreliable 

connections or localized thermal depoling of the elements. As a solution to these 

problems, active piezoceramic composite actuators (Smart Materials Corporation), 

active fibre composites (Massachusetts Institute of Technology) and macro fibre 

composites, MFCs (NASA, Langley Centre) have been developed recently (Park et 

al., 2003a). The MFCs have been commercially available since 2003. These new 

types of PZTs are low-cost, damage tolerant, can conform to curved surface and are 

embeddable. In addition, Active Control eXperts, Inc. (ACX), now owned by Mide 

Technology Corporation, has developed a packaging technology in which one or 

more PZT elements are laminated between sheets of polymer flexible printed 

circuitry. This provides the much robustness, reliability and ease of use. The 

packaged sensors are commercially called QuickPack® actuators (Mide Technology 

Corporation, 2004). These are now widely used as vibration dampers in sporting 

goods, buzzer alerts, drivers for flat speakers and more recently in automotive and 



 
 
                                                                               SMART STRUCTURES AND MATERIALS 

14 
 

aerospace components (Pretorius et al., 2004). However, these are presently many 

times expensive than raw PZT patches. 

 

 

(b) Piezopolymers 

The most common commercial piezopolymer is the Polyvinvylidene Fluoride 

(PVDF). It is made up of long chains of the repeating monomer (-CH2-CF2-) each 

of which has an inherent dipole moment. PVDF film is manufactured by 

solidification from the molten phase, which is then stretched in a particular 

direction and poled. The stretching process aligns the chains in one direction. 

Combined with poling, this imparts a permanent dipole moment to the film. 

Because of stretching, the material is rendered piezoelectrically orthotropic, that is 

d31 ≠ d32, where ‘1’ is the stretching direction. However, it still remains 

mechanically isotropic.  

 

The PVDF material is characterized by low stiffness (Young’s modulus is 1/12th 

that of aluminum). Hence, the PVDF sensors are not likely to modify the stiffness 

of the host structure due to their own stiffness. Also, PVDF films can be shaped as 

desired according to the intended application. Being polymer, it can be formed into 

very thin sheets and adhered to curved surfaces also due to its flexibility. These 

characteristics make PVDF films more attractive for sensor applications, in spite of 

their low piezoelectric coefficients (approximately 1/10th of PZT). It has been 

shown by Sirohi and Chopra (2000b) that shear lag effect is negligible in PVDF 

sensors. 

 

Piezo-rubber, which consists of fine particles of PZT material embedded in 

synthetic rubber (Rogers, 1990), has appeared as an alternative for PVDF. The 

piezo-rubber shows much higher electrical output due to larger thickness, which is 

not possible in PVDF. The piezo-rubber is used in piezoelectric coaxial cable as a 

vehicle sensor. It has much longer life and is immune to rain water. 
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PIEZOELECTRIC MATERIALS AS MECHATRONIC IMPEDANCE 

TRANSDUCERS (MITs)  FOR SHM 

The term mechatronic impedance transducer (MIT) was coined by Park (2000). A 

mechatronic transducer is defined as a transducer which can convert electrical 

energy into mechanical energy and vice versa. The piezoceramic (PZT) materials, 

because of the direct (sensor) and converse (actuator) capabilities, are mechatronic 

transducers. When used as MIT, their electromechanical impedance characteristics 

are utilized for diagnosing the condition of the structures and the same patch plays 

the dual roles, as an actuator as well as a sensor. The technique utilizing the PZT 

based MIT for SHM/ NDE has evolved during the last nine years and is called as 

the electro-mechanical impedance (EMI) technique in the literature. The following 

sections describe the various aspects of this technique in detail. 

 

Physical Principles 

 

The EMI technique is very similar to the conventional global dynamic response 

techniques described previously. The major difference is with respect to the 

frequency range employed, which is typically 30-400kHz in EMI technique, against 

less than 100Hz in the case of the global dynamic methods.  

 

In the EMI technique, a PZT patch is bonded to the surface of the monitored 

structure using a high strength epoxy adhesive, and electrically excited via an 

impedance analyzer. In this configuration, the PZT patch essentially behaves as a 

Fig. 6 Modelling PZT-structure interaction. 

(a) A PZT patch bonded to structure under electric excitation.  

(b) Interaction model of PZT patch and host structure. 
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thin bar undergoing axial vibrations and interacting with the host structure, as 

shown in Fig. 6 (a). The PZT patch-host structure system can be modelled as a 

mechanical impedance (due the host structure) connected to an axially vibrating 

thin bar (the patch), as shown in Fig. 6(b). The patch in this figure expands and 

contracts dynamically in direction ‘1’ when an alternating electric field E3 (which is 

spatially uniform i.e. ∂E3/∂x = ∂E3/∂y = 0) is applied in the direction ‘3’. The patch 

has half-length ‘l’, width ‘w’ and thickness ‘h’. The host structure is assumed to be 

a skeletal structure, that is, composed of one-dimensional members with their 

sectional properties (area and moment of inertia) lumped along their neutral axes.  

Therefore, the vibrations of the PZT patch in direction ‘2’ can be ignored. At the 

same time, the PZT loading in direction ‘3’ is neglected by assuming the 

frequencies involved to be much less than the first resonant frequency for thickness 

vibrations. The vibrating patch is assumed infinitesimally small and to possess 

negligible mass and stiffness as compared to the host structure. The structure can 

therefore be assumed to possess uniform dynamic stiffness over the entire bonded 

area. The two end points of the patch can thus be assumed to encounter equal 

mechanical impedance, Z, from the structure, as shown in Fig. 2.8 (b). Under this 

condition, the PZT patch has zero displacement at the mid-point (x= 0), irrespective 

of the location of the patch on the host structure. Under these assumptions, the 

constitutive relations (Eqs. 1 and 2) can be simplified as (Ikeda, 1990)  

    1313333 TdED T += ε                    (13) 

331
1

1 Ed
Y
TS

E
+=                    (14) 

where S1 is the strain in direction ‘1’, D3 the electric displacement over the PZT 

patch, d31 the piezoelectric strain coefficient and T1 the axial stress in direction ‘1’. 

)1( jYY EE η+= is the complex Young’s modulus of elasticity of the PZT patch at 

constant electric field and )1(3333 jTT δεε −=  is the complex electric permittivity (in 

direction ‘3’) of the PZT material at constant stress, where 1−=j . Here, η and δ 

denote respectively the mechanical loss factor and the dielectric loss factor of the 

PZT material.  
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The one-dimensional vibrations of the PZT patch are governed by the following 

differential equation (Liang et al., 1994), derived based on dynamic equilibrium of 

the PZT patch. 

     2

2

2

2

t
u

x
uY E

∂
∂

=
∂
∂ ρ                    (15) 

where ‘u’ is the displacement at any point on the patch in direction ‘1’. Solution of 

the governing differential equation by the method of separation of variables yields  
tjexBxAu ωκκ )cossin( +=                    (16) 

where κ is the wave number, related to the  angular frequency of excitation ω, the 

density ρ and the complex Young’s modulus of elasticity of the patch by  

     
EY
ρωκ =                       (17) 

Application of the mechanical boundary condition that at x = 0 (mid point of the 

PZT patch), u = 0 yields B = 0. 

Hence, strain in PZT patch  xAe
x
uxS tj κκω cos)(1 =
∂
∂

=          (18) 

and velocity     xeAj
t
uxu tj κω ω sin)( =
∂
∂

=&        (19) 

Further, by definition, the mechanical impedance Z of the structure is related to the 

axial force F in the PZT patch by 

    )()(1)( lxlxlx uZwhTF === −== &         (20) 

where the negative sign signifies the fact that a positive displacement (or velocity) 

causes compressive force in the PZT patch (Liang et al., 1993, 1994).  Making use 

of Eq. (2.14) and substituting the expressions for strain and velocity from Eqs. 

(2.18) and (2.19) respectively, we can derive 

    
))(cos(

31

a

oa

ZZlh
dVZA

+
=

κκ
         (21) 

where Za is the short-circuited mechanical impedance of the PZT patch, given by  

    
)tan()( lj

Ywh
Z

E

a κω
κ

=                        (22) 
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Za is defined as the force required to produce unit velocity in the PZT patch in short 

circuited condition (i.e. ignoring the piezoelectric effect) and ignoring the host 

structure.  

 

The electric current, which is the time rate of change of charge, can be obtained as 

   dxdyDjdxdyDI
AA
∫∫∫∫ == 33 ω&                   (23) 

Making use of the PZT constitutive relation (Eq. 13), and integrating over the entire 

surface of the PZT patch (-l to +l), we can obtain an expression for the 

electromechanical admittance (the inverse of electro-mechanical impedance) as  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=
l

lYd
ZZ

ZYd
h
wljY E

a

aET

κ
κεω tan)(2 2

31
2
3133       (24) 

This equation is same as that derived by Liang et al. (1994), except that an 

additional  factor of 2 comes into picture. This is due to the fact that Liang et al. 

(1993, 1994) considered only one-half of the patch in their derivation. 

 

In the EMI technique, this electro-mechanical coupling between the mechanical 

impedance Z of the host structure and the electro-mechanical admittance Y is 

utilized in damage detection. Z is a function of the structural parameters- the 

stiffness, the damping and the mass distribution. Any damage to the structure will 

cause these structural parameters to change, and hence alter the drive point 

mechanical impedance Z. Assuming that the PZT parameters remain unchanged, the 

electromechanical admittance Y  will undergo a change and this serves as an 

indicator of the state of health of the structure. Measuring Z directly may not be 

feasible, but Y can be easily measured using any commercial electrical impedance 

analyzer. Common damage types altering local structural impedance Z are cracks, 

debondings, corrosion and loose connections (Esteban, 1996), to which the PZT 

admittance signatures show high sensitivity. Contrary to low-frequency vibration 

techniques, damping plays much more significant role in the EMI technique due to 

the involvement of ultrasonic frequencies. Most conventional damage detection 

algorithms (in low-frequency dynamic techniques), on the other hand are based on 
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damage related changes in structural stiffness and inertia, but rarely in damping 

(Kawiecki, 2001). 

 

It is worthwhile to mention here that traditionally, in order to achieve self-sensing, a 

complicated circuit was warranted (Dosch et al., 1992). This was so because in the 

traditional approach, an actuating signal was first applied and the sensing signal was 

then picked up and separated from the actuating signal. But due to the high voltage, 

and also due to the strong dependence of the capacitance on temperature, the signal 

was mixed with the input voltage as well as noise and was therefore not very 

accurate. The EMI technique, on the other hand, offers a much hassle free, 

simplified, and more accurate self-sensing approach.  

 

At low frequencies (<1/5 th of the first resonant frequency of the PZT patch), the 

term (tanκl/κl) → 1. This is called as ‘quasi-static sensor approximation’ 

(Giurgiutiu and Zagrai, 2002), and for this condition, Eq. (24) can be simplified as  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
a

ET

ZZ
ZYd

h
wljY 11

2
31332 εω            (25) 

 

The electromechanical admittance Y  (unit Siemens or ohm-1) consists of real and 

imaginary parts, the conductance (G) and susceptance (B), respectively. A plot of G 

over a sufficiently wide band of frequency serves as a diagnosis signature of the 

structure and is called the conductance signature or simply signature.        Fig. (7) 

shows the typical conductance and susceptance plots for a PZT patch bonded on to 

the bottom flange of a steel beam (Bhalla et al., 2001). The sharp peaks in the 

conductance signature correspond to structural modes of vibration. This is how the 

conductance signature identifies the local structural system (in the vicinity of the 

patch) and hence constitutes a unique health-signature of the structure at the point 

of attachment.   

 

Since the real part actively interacts with the structure, it is traditionally preferred 

over the imaginary part in the SHM applications. It is believed that the imaginary 

part (susceptance) has very weak interaction with the structure (Sun et al., 1995). 
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Therefore, all investigators have so far considered it redundant and have solely 

utilized the real part (conductance) alone in the SHM applications. 

 

 

 

 

 

 

 

 

 

 

Method of Application 

In the EMI technique, a PZT actuator/ sensor patch is bonded to the surface of the 

structure (whose health is to be monitored) using high strength epoxy adhesive. The 

conductance signature of the patch is acquired over a high frequency range   (30-

400 kHz).  This signature forms the benchmark for assessing the structural health. 

At any future point of time, when it is desired to assess the health of the structure, 

the signature is extracted again and compared with the benchmark signature.  

 

The signature of the bonded PZT patch is usually acquired by means of 

commercially available impedance analyzers, such as HP 4192A impedance 

analyzer (Hewlett Packard, 1996). The impedance analyzer imposes an alternating 

voltage signal of 1 volts rms (root mean square) to the bonded PZT transducer over 

the user specified preset frequency range (for example 140-150 kHz in Fig. 7). The 

magnitude and the phase of the steady state current are directly recorded in the form 

of conductance and susceptance signatures in the frequency domain, thereby 

eliminating the requirements of domain transforms. Besides, no amplifying device 

is necessary. In fact, Sun et al. (1995) reported that higher excitation voltage has no 

influence on the conductance signature, but might only be helpful in amplifying 

weak structural modes.  

 

Fig. 7 Conductance and susceptance plots of a PZT patch bonded to 

bottom flange of a steel beam.
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